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We consider a one-dimensional Ising-like fully anisotropic S= 1
2 Heisenberg antiferromagnetic Hamiltonian

and study the dynamics of domain-wall excitations in the presence of a staggered magnetic field, hx, along the
transverse direction. We obtain dynamical spin-correlation functions along the magnetic field, Sxx�q ,��, and
perpendicular to it, Syy�q ,��. It is shown that the line shapes of Sxx�q ,�� and Syy�q ,�� are purely symmetric
at the zone boundary, q= �

2 . It is observed in Sxx�q ,�� for � /2�q�� that the spectral weight moves toward
high-energy side with the increase in hx. We discuss the relevance of this model to explain the spin dynamics
of CsCoCl3 in presence of weak staggered field.
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I. INTRODUCTION

The spin-1
2 Ising-like antiferromagnetic �AFM� chain has

been the subject of theoretical studies for quite some time.
The spin dynamics of the system are characterized by a pic-
ture of propagating domain walls �or solitons�. The magnetic
compounds CsCoCl3 and CsCoBr3 are good examples of S
= 1

2 Ising-like AFM chains. The simplest exchange interac-
tion Hamiltonian describing these compounds is the S= 1

2
XXZ Heisenberg model

HXXZ = 2J�
i

�Si
zSi+1

z + ��Si
xSi+1

x + Si
ySi+1

y ��, 0 � � � 1. �1�

For very small �, the lowest order ground state of Eq. �1� is
the Néel states with a z component of the total spin given by
ST

z =0. Villain1 has calculated the longitudinal correlation
function Szz�q ,�� based on the basis states consisting of a
single domain wall and predicted the appearance of a central
peak with sharp shoulders. On the other hand, Ishimura and
Shiba2 proposed a picture of domain-wall pair �DWP� states
and showed that the propagating DWPs give rise to an exci-
tation continuum around the Ising excitation energy 2J. The
transverse correlation function Sxx�q ,�� exhibits a broad
peak around 2J. The existence of these peaks of Szz�q ,�� and
Sxx�q ,�� has been verified by inelastic neutron-scattering ex-
periments on CsCoCl3 �Refs. 3–5� and CsCoBr3.6 A signifi-
cant feature of the spin-wave response of Sxx�q ,�� near the
zone center �q=�� is that the spectral weights are heavily
concentrated toward the lower energy region. Nagler et al.6

added a staggered field term of the form HS=h�i�−1�iSi
z to

the Hamiltonian in Eq. �1�, where the staggered field h has
two contributions ho and hic. The first contribution originates
from taking account of the exchange mixing of higher levels
with the ground doublet. The second contribution arises from
the interchain exchange interactions at low temperatures. The
interchain interactions treated in the mean-field approxima-
tion, give rise to the staggered field term hic. The effective
Hamiltonian contains both the terms HXXZ and HS. The stag-
gered field, HS, splits the broad peak into discrete peaks
which is known as Zeeman ladder and observed in Raman
scattering on CsCoCl3 and CsCoBr3.7 However, the observed

line shapes of Sxx�q ,�� are quite different from those of the
theoretical predictions. Matsubara and Inawashiro8 have in-
cluded a weak next-nearest-neighbor �NNN� ferromagnetic
�FM� interaction HF in the Hamiltonian HXXZ in Eq. �1�

HF = − 2J��
i

�Si
zSi+2

z + ��Si
xSi+2

x + Si
ySi+2

y �� . �2�

They have shown the existence of bound states of DWPs as
well as the free DWP states and the transverse correlation
function Sxx�q ,�� exhibits a sharp peak at lower energy re-
gion. The effect of transverse magnetic field on the spin dy-
namics of this model has been studied by Murao et al.9 and
shown that the spectral weight moves toward the low-energy
side in Syy�q ,�� for � /2�q�� with the increase in the
transverse field, while there is no appreciable change in
Sxx�q ,�� for all q. Although the proposed form of NNN FM
coupling provides a good description of most of the experi-
mental results, the required magnitudes of the NNN ex-
change �J���0.1�J� is unphysically large.10 Later, Bose et
al.11 proposed the Ising-like fully anisotropic Heisenberg
AFM Hamiltonian in one dimension and showed that the
asymmetric line shapes of Sxx�q ,�� and the bound states of
DWPs can be derived. In 2001, Ghosh12 studied the above
model in presence of transverse field and observed its effect
on the correlations functions.

In the absence of staggered magnetic field, ST
z is a good

quantum number and the eigenvalues of different ST
z having

unequal number of DWPs form different energy bands sepa-
rating by energy 2J. In the presence of longitudinal magnetic
field, hz, ST

z still is a good quantum number and the eigen-
values within the same value of ST

z as well as the position of
the peak of Sxx�q ,�� shift parallel with the increase in hz.
However, ST

z is no longer a good quantum number in pres-
ence of a staggered magnetic field hx and a mixing of states
with different ST

z occurs. Thus, eigenvalues as well as eigen-
states will be modified by hx and the characteristics of the
spin dynamics will be different.

In this paper, we study the effect of the staggered field, hx,
on the dynamical spin-correlation functions in a fully aniso-
tropic Ising-like S= 1

2 Heisenberg AFM chain at low tempera-
tures. Dynamical correlation functions Sxx�q ,�� and
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Syy�q ,�� have been derived using the picture of propagating
DWPs. Finally, we introduce this model to explain the spin
dynamics of CsCoCl3 in presence of weak staggered field. In
Sec. II, the theory and the results for the eigenvalues of the
DWP continuum and DWP bound states are derived. The
dynamical spin-correlation functions Sxx�q ,�� and Syy�q ,��
are presented in Sec. III. The comparison with the experi-
mental data are available in Sec. IV. Section V contains a
discussion of the results obtained.

II. MODEL AND DOMAIN-WALL PAIR STATES

The crystal structure of CsCoCl3 shows that the magnetic
Co2+ ions are surrounded by trigonally distorted octahedra of
Cl− ions, which is shown in the Fig. 1�a�. The octahedra are
drawn in blue line. A closer look into the structure reveals
that basal planes �black� of the octahedra which also contain
the Co2+ ions do not lie in the same plane. The different
orientation of the successive octahedra essentially leads to a
zigzag orientation of the successive basal planes. But the
positions of the Co2+ ions in the basal planes are such that
they form a chain along the c axis �red line�. Therefore, it has
been proposed, herewith, that this zigzag orientation of the
successive Cl octahedra which provide a strong antiferro-
magnetic superexchange path between adjacent Co2+ ions
subsequently leads to a fully anisotropic AFM interaction
along with a presence of staggered field hx along the trans-
verse direction �Fig. 1�b��.

The one-dimensional fully anisotropic Ising-like Heisen-
berg Hamiltonian in the presence of staggered magnetic field
is given by

H = 2�
i

N

�JxSi
xSi+1

x + JySi
ySi+1

y + JzSi
zSi+1

z �

− g��BHx�
i

N

�− 1�iSi
x,

=2J�
i

N �Si
zSi+1

z +
�1

2
�Si

+Si+1
− + Si

−Si+1
+ � +

�2

2
�Si

+Si+1
+ + Si

−Si+1
− �	

−
hx

2 �
i

N

�− 1�i�Si
+ + Si

−� ,

J = Jz, �1 =
Jx + Jy

2J
, �2 =

Jx − Jy

2J
,

hx = g��BHx, �1, �2 � 1. �3�

Hx is the transverse magnetic field and assume hx�2J. N
is the total number of spins. Since we are interested in
excitations at low temperatures, we consider low-lying ex-
cited states. These states can be obtained from the Néel
state by flipping a block of adjacent spins, giving rise to
DWP states with ST

z =0 and �1 �Fig. 2�. These excitations
occur around the Ising energy 2J above the ground state.

This lowest energy subspace is hereby decoupled into two
orthogonal series of states, say, “a” and “b.” Series a has
been generated by flipping a block of spins which contains j
numbers of adjacent spins and the block may begin from any
odd �m� site of the �Néel1
 state. Therefore, � j

�a��m� repre-
sents that state which contains a block of j number of adja-
cent flipped spins and this block begins from the mth site.
Series a starts from the state with ST

z =1 where two domain
walls are adjacent, i.e., �1

�a��m�. The subsequent states
� j

�a��m��j=2,3 ,4 , . . .� with ST
z =0 and +1 are generated from

�1
�a��m� in such a way that the separation between the domain

walls is increased by unit lattice distance successively toward
the right-hand side of the chain. Hence,

= Co = Cl

(a) (b)

cc

hx

FIG. 1. �Color online� The structure of CsCoCl3 crystal showing
the chain of Co2+ ions along the c axis �a�. The proposed model
along with the staggered field on the Co2+ ions is shown in �b�.
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�1
�a��m� = Sm

+ �Néel1
 ST
z = 1,

� j
�a��m� = Sm+j−1

− � j−1
�a� �m�,�j = 2,4,6, . . .� ST

z = 0,

� j
�a��m� = Sm+j−1

+ � j−1
�a� �m�,�j = 3,5,7, . . .� ST

z = 1, �4�

where �Néel1
 is one of the Néel states. We choose a linear
combination of these basis states for describing propagating
DWPs with wave vector q as

�j,q
a =� 2

N
�

m=odd
e−iqm� j

�a��m� . �5�

On the other hand, series b has been generated by flipping
j numbers of adjacent spins starting from any even �m�� site
of the �Néel1
 state. Therefore, series b starts from the state
with ST

z =−1, i.e., �1
�b��m�� and the subsequent states with

ST
z =0 and −1 appear alternately as described below.

�1
�b��m�� = Sm

− �Néel1
 ST
z = − 1,

� j
�b��m�� = Sm�+j−1

+ � j−1
�b� �m��,�j = 2,4,6, . . .� ST

z = 0,

� j
�b��m�� = Sm�+j−1

− � j−1
�b� �m��,�j = 3,5,7, . . .� ST

z = − 1.

�6�

Taking a linear combination of these states with wave vector
q we have,

�j,q
b =� 2

N
�

m�=even

e−iqm�� j
�b��m�� . �7�

With the help of the Eqs. �5�–�7�, one can obtain H�j ,q
a as

H�1,q
a = 2J�1,q
a + V�1
�3,q
a + V�2

�1,q
b +
hx

2
��2,q
a

+ e−iq�2,q
b� ,

H�2,q
a = 2J�2,q
a + V�1
�4,q
a +

hx

2
��1,q
a − �3,q
a

+ e−iq�3,q
b − eiq�1,q
b� ,

] ]

H�j,q
a = 2J�j,q
a + V�1
�j + 2,q
a + V�1

� �j − 2,q
a +
hx

2
�ei�j�j

− 1,q
a + ei��j+1��j + 1,q
a� +
hx

2
�e−iq�j + 1,q
b

− eiq�j − 1,q
b� , j 	 3, �8�

where V�1
=�1J�1+e−2iq� and V�2

=2�2J cos q. In the same
manner, one could derive similar set of equations for H�j ,q
b
in terms of �n ,q
a and �n ,q
b.

The Hamiltonian matrix �Eq. �3�� is found to decouple
into two orthogonal subspaces, 
 and �, those are generated
after mixing the series a and b in the following way:

�j,q

 =
1
�2

��j,q
a + ei��j+1��j,q
b� ,

�j,q
� =
1
�2

��j,q
a + ei�j�j,q
b� . �9�

To distinguish between two series of states, i.e., 
 and �, the
operator O has been introduced, which is a combination of
two operations, spin reversal at every site followed by a
translation of one lattice unit. The states �j ,q

 and �j ,q
� are
found to be the eigenstates of O having different eigenvalues
as mentioned below.

O�j,q

 = eiqei��j+1��j,q

,

O�j,q
� = eiqei�j�j,q
�.

As a result,

H�1,q

 = �2J + V�2
��1,q

 + V�1

�3,q

 + V
�2,q

,

H�2,q

 = 2J�2,q

 + V�1
�4,q

 + �V


� �1,q

 − V
�3,q

� ,

] ]

H�j,q

 = 2J�j,q

 + V�1
�j + 2,q

 + V�1

� �j − 2,q

 + ei�jV

� �j

− 1,q

 + ei��j+1�V
�j + 1,q

, j 	 3, �10�

where V
=
hx

2 �1−e−iq�. Similarly, one can derive H�j ,q
�

1 2 43 5 6 7 1098m

|Néel1〉

|Néel2〉

φ
(a)
1 (3)

φ
(a)
2 (3)

φ
(a)
3 (3)

φ
(b)
1 (4)

φ
(b)
2 (4)

φ
(b)
3 (4)

FIG. 2. Néel states and DWP states for ST
z = �1 and 0. The

dotted vertical lines indicate the position of domain walls.
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with 
 and V
 being replaced by � and V�=
hx

2 �1+e−iq�, re-
spectively. The first excited states can be constructed as a
linear combination of the 
 and � series separately, as de-
scribed below,

�
�q� = �
j


 j�j,q

 and ���q� = �
j

� j�j,q
�. �11�

With the help of the Eq. �10�, the following equations for the

coefficients 
̄ j and �̄ j are obtained as:



̄
̄1 = �2J + V�2
�
̄1 + V̄

̄2 + V̄�1


̄3,



̄
̄2 = 2J
̄2 + V̄
�
̄1 − 
̄3� + V̄�1

̄4,

] ]



̄
̄ j = 2J
̄ j + V̄
�ei�j
̄ j−1 + ei��j+1�
̄ j+1� + V̄�1
�
̄ j−2

+ 
̄ j+2�, j 	 3, �12�

where 

̄ is the eigenvalue, V̄
=−hx sin� q
2 �, V̄�1

=
−2�1J cos q, and 
̄ j =
 je

i�q+��/2j. In the same manner, one

can derive similar set of equations for �̄ with 
̄ being re-

placed by �̄, V̄
 by V̄�=hx cos� q
2 �, 
̄ j by �̄ j =� je

iq/2j and 

̄

by 
�̄, but V̄�1
=2�1J cos q.

Dispersion relations are obtained numerically by solving
Eq. �12�, with N=2000. Here, we present the results for �1
=0.05 and �2=0.10, since these values are previously esti-
mated in the compound CsCoCl3.11 Figure 3 shows the dis-

persion relations for both the 
̄ and �̄ series. The spin-wave
continuum and the bound-state energy are plotted by dashed
and solid lines �red�, respectively. In both the series, the
bound-state energy always lies above the continuum and the
bound state does not exist when �1��2. The spectrum for the


̄ series is related to that of the �̄ series by the equation


̄�q�= �̄�q−�� even in the presence of hx. When hx�0, the

band for the 
̄��̄� series extends toward the high as well as
the low-energy regions resulting a increase in the band width
for �

2 �q���0�q�
�
2 �. This feature also enhances with in-

creasing hx. So, the spin-wave excitations have a finite width
at q= �

2 in contrast with the case of hx=0. The width also
broadens with the increase in hx. Note that the bound-state
energy is not affected by the presence of hx.

III. DYNAMICAL SPIN-CORRELATION FUNCTIONS
AT T=0 K

The dynamical spin-correlation functions along the direc-
tion of hx at T=0 is defined as

Sxx�q,�� = �
e

���e�Sx�q���g
�2��� − 
e + 
g� , �13�

where ��g
 and ��e
 denote the ground and excited states,
respectively, and 
g, 
e are the corresponding eigenvalues. In

this case, the ground state is the �Néel1
 state and the sum-
mation extends over the first excited states only. Also, the
Fourier transform of Sx, i.e.,

1.7
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1.9

2
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2.3
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1.9

2

2.1
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2.3

0

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

0

(a)

(b)

(c)

(d)

q

q

q

q

λ
ᾱ

λ
ᾱ

λ
β̄

λ
β̄

hx =0

hx =0

hx =0.1J

hx =0.1J

π/2

π/2

π/2

π/2

π

π

π

π

FIG. 3. �Color online� Spin-wave excitation continuum �dashed
lines� and DWP bound-state energies �red solid lines� for both the 
̄

��a�, �b�� and �̄ ��c�, �d�� series, �1=0.05 and �2=0.1.
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Sx�q� =
1

2�N
�

j

eiqrj�Sj
+ + Sj

−� .

Similarly, the dynamical spin-correlation function perpen-
dicular to the direction of hx, Syy�q ,��, is defined by replac-
ing the superscript x with y in Eq. �13�, where

Sy�q� =
1

2i�N
�

j

eiqrj�Sj
+ − Sj

−� .

Since the ground state is the �Néel1
 state, Sxx�q ,�� and
Syy�q ,�� directly reflect the wave-number dependence of the
excited states �
̄�q�=� j
 je

i�q+��/2j�j ,q

 and ��̄�q�
=� j� je

i�/2j�j ,q
�. With the help of the Eq. �11�, the dynami-

cal spin-correlation functions can further be written as9

Sxx�q,�� =
1

4�

̄

�
̄1�2��� − 

̄ + 
g� ,

Syy�q,�� =
1

4�
�̄

��̄1�2��� − 
�̄ + 
g� . �14�

Note that Sxx�q ,�� depends only on �
̄1�2 while Syy�q ,�� on

��̄1�2. Thus, the 
̄ series contributes on the Sxx�q ,��, whereas

the �̄ series on the Syy�q ,��. The functions Sxx�q ,�� and
Syy�q ,�� for hx=0 are shown in Fig. 4. The solitary sharp
peak originates from the bound state, while the broad peak
results from the free DWP states. The intensity of the sharp
peak does not depend on the number of spins N, while the
broad peak comprises �N−1� peaks of which has intensity on
the order of 1

N . Note that at the zone boundary �q= �
2 �, the

width of the continuum vanishes. This is also verified in
neutron-scattering experiments on CsCoCl3.4 The line shapes
of Sxx�q ,�� for various values of hx have been plotted in Fig.
5. The main feature of Sxx�q ,�� induced by hx shows that the
line shape is purely symmetric at the zone boundary �q= �

2 �
and it is highly asymmetric away from the zone boundary.

Since V̄
 vanishes at q=0, the shape of Sxx�q=0,�� is not
affected by the presence of hx. For �

2 �q��, the spectral
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width of the histogram is ��=0.004J.
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weight concentrates mainly in the low-energy side of the
continuum along with the sharp peak. The height of the sharp
peak is found to diminish with the increase in hx. As a result,
the spectral weight shifts toward the high-energy side with
increasing hx. So, at higher values of hx, Sxx�q ,�� tends to
regain its symmetric structure even away from the zone
boundary. We do not plot the lineshapes of Syy�q ,�� sepa-
rately, because Syy�q ,�� is related to the Sxx�q ,�� by the
equation Syy�q ,��=Sxx��−q ,��. Note that Sxx�q ,�� for �

2
�q�� and Syy�q ,�� for 0�q�

�
2 are sensitive on hx as

observed by Murao et al.9

IV. COMPARISON WITH THE EXPERIMENTAL RESULTS

The dynamical structure factors Sxx�q ,�� are plotted in
Figs. 6–8 for three different values of the momenta q
=0.5�, 0.7�, and �, separately, and compared with the ex-
perimental data obtained by Yoshizawa et al.4 for CsCoCl3.
The histograms �black� show the theoretical predictions
while the lines with errorbars �magenta� are the experimental
results. The functions Sxx�q ,�� with �a� hx=0.0 and �b� hx
=0.01J are plotted separately for better clarity. The figures
with the staggered field hx=0.01J along with �1=0.10, �2
=0.105 show much better agreement to the experimental re-
sults than those obtained with hx=0.0. This observation
eventually supports the presence of a staggered magnetic
field within CsCoCl3.

V. DISCUSSION OF RESULTS

We have studied the effect of the staggered magnetic field
hx on dynamical properties of one-dimensional fully aniso-

tropic Ising-like antiferromagnet at low temperatures. We
have shown using this Hamiltonian that some of the results
obtained by Murao et al.,9 in which a FM NNN interaction is

1.90 2.00 2.10
0.00

0.11

0.22 1.00

1.90 2.00 2.10
0.00

0.11

0.22

hx = 0.0

hx = 0.01J

(a)

(b)

q = π
2

q = π
2

Sxx(q, ω)

Sxx(q, ω)

ω

ω

FIG. 6. �Color online� The function Sxx�q ,��, q=0.5� for �a�
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assumed besides the usual AFM NN interaction, can be
qualitatively reproduced. These include the formation of
DWP bound states, two types of excited modes: 
̄ and �̄ and
an asymmetry in the line shape of the correlation functions
Sxx�q ,�� and Syy�q ,��. In order to obtain the asymmetry in
the line shape of Sxx�q ,�� and Syy�q ,��, if a FM NNN ex-
change of magnitude �J���0.1�J� is required, which consid-
ering that the NNN exchange is through two nonmagnetic
ligands would seem to be unphysically large.10 On the other
hand, our model could explain all these characteristics with
the usual NN AFM exchange interactions. There are, how-
ever, a number of differences. Murao et al.9 observed a
single bound-state branch which is symmetric with respect to
the zone boundary, whereas in the present study, we obtain
asymmetric bound-state branch which always lies above the
continuum. No experimental evidence are as yet available on
the effect of bound states on the thermodynamic and dy-
namic properties of the compounds CsCoCl3 and CsCoBr3.

The 
̄ series contribute to Sxx�q ,��, whereas �̄ series con-
tribute to Syy�q ,��. Both Sxx�q ,�� and Syy�q ,�� have sym-
metry at the zone boundary even in the presence of hx. This
symmetry is totally lost away from the zone boundary. Fi-
nally, our theoretical predictions have been compared with
the experimental data. An excellent agreement with the ex-

perimental results supports the presence of a internal stag-
gered magnetic field within CsCoCl3.

Apart from relevance to experimental system CsCoCl3,
the present study is intended to provide insights about the
spin dynamics of fully anisotropic Ising-like AFM system in
the presence of staggered magnetic field hx. The ground-state
energy and low-lying excitation spectrum of the fully aniso-
tropic Hamiltonian are known exactly because of the map-
ping between the fully anisotropic Hamiltonian and the ex-
actly solvable eight vertex model.13,14 The exact results of
the fully anisotropic AFM Hamiltonian in presence of a mag-
netic field in an arbitrary direction are also available,15 while
no exact result is so far available of that model in presence of
the staggered field. So, our calculations provide us with some
physical insights about spin dynamics in Ising-like fully an-
isotropic AFM system in presence of the staggered magnetic
field.
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